
1 Top-level summary 

1.1 Process 
1. Starting point: copied the model (ResNet-18) and training hyperparameters from the 

research paper 
2. Split training data into training (80%) and validation (20%), stratified on annotator 

count. Used holdout validation instead of cross-validation for training speed. 
3. Used early stopping on the training process triggered on validation F1 score; loaded 

the model state from the best epoch 
4. ResNet-18 experiments: image augmentation, removing difficult images, class 

balancing, and transfer learning 
5. Using the best hyperparameters from the ResNet-18 experiments, I moved on to ViT-

Base Patch 16/224 model 
6. ViT experiments: learning rate, effective batch size (gradient accumulation), 

dropout, and weight decay 
7. Tried ensembling with the best ResNet and ViT models 
8. Using the best hyperparameters from the ResNet-18 experiments, trained and 

tested FCNN with 4 fully-connected layers (128 neurons → 64 neurons → 32 
neurons → 1 neuron) 

1.2 Performance 
1. ResNet-18 (11 million parameters) – comparable performance to the research paper 

(paper reported AUC); better performance than the research paper with additional 
generalization techniques (however, made a mistake in the training process – see 
Mistakes/issues section). Only trained and tested once; research paper trained and 
tested for 10 random seeds. 

2. ViT-Base Patch 16/224 (86 million parameters) – better performance than research 
paper over 10 random seeds; unclear if performance is better than ResNet. 

3. Ensemble ResNet+ViT – worse performance than each model individually. 
4. FCNN (19 million parameters) – the worst model but better than randomly guessing 

Model AUC 
ResNet-18, random init weights (research paper) 84.5 
Research paper, ResNet-18, pretrained (research paper) 92.7 
ResNet-18, random init weights 91.6 
ResNet-18, pretrained 94.2 
ViT-Base Patch 16/224, pretrained 94.85 



FCNN 74.3 

1.2.1 Research paper comparison 

I tried to replicate the training configuration from the paper. Performance is comparable. 

Training hyperparameters: 

1. Single training/testing run 
2. Randomly initialized weights and pretrained weights; update all layers 
3. Holdout validation split 80/20 
4. Image augmentation on all samples (horizontal flip p=0.5, vertical flip p=0.5, rotate 

+/- 180 degrees p=0.5) 
5. Differences from the research paper 

a. I used holdout validation, but the research paper used the test set for 
validation and for reporting performance 

b. I only trained and tested once; the research paper trained and 
validated/tested on 10 random seeds 

Research paper performance: 

 

 



My performance: 

 

1.2.2 Best of ResNet-18 

Training hyperparameters: 

1. Single training/testing run 
2. Randomly initialized weights and pretrained weights; update all layers 
3. No holdout validation 
4. Remove 3/7 and 4/7 annotator images from training set* 
5. Random oversampling* 
6. Image augmentation on all samples 

*These are additional generalization techniques I added on top of the research paper. 

I did not try a deeper ResNet because ResNet-18 is already overfitting, and the research 
paper also found that deeper ResNets don’t improve performance. 



 

1.2.3 ViT-Base Patch 16/224 

Training hyperparameters: 

1. 10 training and testing runs over 10 random seeds 
2. Pretrained weights; update all layers 
3. No holdout validation 
4. Dropout rate for final layer = 0.5 (0 for all others) 
5. Same as ResNet-18: 

a. Remove 3/7 and 4/7 annotator images from training set 
b. Random oversampling 
c. Image augmentation on all samples 

AUC mean and standard deviation: 0.9485, 0.0041 



 

1.2.4 FCNN 

Training hyperparameters: 

1. Single training/testing run 
2. Randomly initialized weights; update all layers 
3. No holdout validation 
4. Remove 3/7 and 4/7 annotator images from training set 
5. Random oversampling 
6. Image augmentation on all samples 
7. Normalized pixel values using mean and standard deviation of 0.5 



 



 



 

1.3 Mistakes/issues 
1. During ResNet experiments, I used validation data for triggering early stop, but I 

used testing data to select the best hyperparameters. I corrected this for the ViT 
experiments – I used the validation data to select the best hyperparameters and 
reported performance on the test data. 

2. Did not set the random seed during ResNet experiments; set random seed to 42 for 
all ViT experiments for reproducibility. 

3. Initially triggered early stop on AUROC (torchmetrics) but found that AUROC seems 
to be calculating incorrectly (see appendix). Moved to calculating AUC manually 
from ROC but finally settled on F1 score for computational efficiency. 

1.4 Future work 
1. Is there any more recent work on MHIST dataset? 
2. Try freezing more layers to improve training speed 
3. Try dropout and weight decay with ResNet-18 
4. Try better transformer models (base transformer model has many drawbacks) 
5. Systematic hyperparameter tuning using Optuna or Ray Tune 

a. Report training speed 



6. Try hybrid CNN-ViT models (coat transformer) 
7. Try GANs to generate synthetic images 
8. Try to segment the region of interest – where is the cancer? 

https://github.com/bowang-lab/MedSAM/tree/MedSAM2. Unsupervised way of 
segmenting the images. Pass image through model; the output is a segment of the 
image.  

9. Debug AUROC issue 
10. Switch from functional programming to object-oriented programming 
11. Switch from .ipynb to .py 

2 ResNet-18 
For computer vision, we spent the most time learning about CNNs, so that’s why I chose to 
start with a CNN. The research paper also used ResNet-18. 

Since this is binary classification, I changed the last layer from Linear(512, 1000) to 
Sigmoid(Linear(512, 1)). The cost function is binary cross entropy (torch.nn.BCELoss). 

I used these training hyperparameters directly from the paper: 

1. Initial learning rate of 0.001 
2. Adam optimizer with a learning rate decay of 0.91 per epoch 
3. Batch size = 32 

To speed up training, I used early stopping, triggering on metrics calculated from the 
validation set and reloading the model state from the best epoch. I tried three different 
metrics from torchmetrics. 

1. Since the research paper reported AUC, I started by triggering on AUROC, but I 
found a problem with AUROC (see appendix) 

2. Then I used ROC and calculated AUC manually, but this was very slow 
3. Finally, I used F1 score 

Initially, I tried two configurations of ResNet-18: 

1. Random weight initialization, update all layers 
2. Pretrained weights, update only final layer 

Since updating only the final layer resulted in poor performance even for the training data, I 
decided to update all layers. 

Pretrained weights improve performance, but the model is overfitting in both cases. 

https://github.com/bowang-lab/MedSAM/tree/MedSAM2


Training data: 

 

 

To improve generalization, I tried 

1. Image augmentation 
2. Removing difficult images – images where the annotators were split. The paper tried 

removing images with 3/7 and 4/7 annotators. 
3. Class balancing 

2.1 Random weight initialization 

2.1.1 Image augmentation 

I tried these augmentations: 



1. Horizontal flipping (p=0.5) + vertical flipping (p=0.5) 
2. Rotation +/- 180 degrees with expansion and resizing to avoid cutting off part of the 

image, p=0.5 
3. Flipping + rotation 
4. Perspective, distortion=0.5, p=0.5 
5. Affine (translate, shear, scale), p=0.5 
6. Flipping + RandomChoice(rotation, perspective, affine) 

This is a case where choosing the hyperparameter was affected by my choice to use testing 
data for tuning. Validation F1 score was best when using perspective, but testing AUC was 
best for flipping + rotation. I used flipping + rotation for further experiments. 

In all cases, image augmentation reduces overfitting and improves generalization. 

Training data: 

 



 

Testing data: 



 

2.1.2 Removing difficult images 

The research paper reported marginal improvement when removing difficult-to-classify 
images (images ranked 3/7 or 4/7 by annotators). 

This idea is similar to Tomek Links, except Tomek Links only removes the majority class 
labels – in this case, 3/7. 

I tried removing 3/7, 4/7, and both 3/7 and 4/7. Removing 4/7 gives the best performance, 
but when combined with image augmentation, removing both 3/7 and 4/7 gives the best 
performance. 

Training data, removing difficult images only: 



 

Training data, removing difficult images and image augmentation: 

 

 



2.1.3 Class balancing 

I tried random oversampling, SMOTE, and ADASYN. In each epoch, I sampled every sample 
at least once. Each epoch trains on 2*(number of majority class samples); to make up the 
difference of the minority class, I uniformly re-sampled minority class samples. For 
ADASYN, I uniformly re-sampled the most difficult-to-classify minority samples.  

Baseline annotator distribution: 

 

Annotator distribution for random oversampling and SMOTE: 



 

Annotator distribution for ADASYN: 



 

For SMOTE and ADASYN, instead of generating synthetic images, I applied image 
augmentation to generate “new” samples. 

Simply balancing the classes, via random oversampling, doesn’t reduce overfitting or 
improve generalization. SMOTE and ADASYN help, but the best performance is given by 
balancing the classes and augmenting all samples. 

Training data: 

 



 



 

2.1.3.1 Random oversampling vs. ADASYN 

Since augmenting all samples gives the best performance, I next tried combinations of 
oversampling techniques (random oversampling vs. ADASYN) and removing difficult 
samples. 

This is a case where choosing the hyperparameter was affected by my choice to use testing 
data for tuning. Validation F1 score was best with ADASYN and removing 3/7 and 4/7, but 
testing AUC was best for random oversampling and removing 3/7 and 4/7, which I used for 
further experiments. 

Training data: 



 

 

Testing data: 



 

2.2 Pretrained weights 
The trends for pretrained weights are the same, but there’s less improvement with 
generalization techniques, because pretraining already helps with generalization. The 
research paper observes that as dataset size increases, the gain from pretraining 
decreases. 

For our dataset, pretraining significantly boosts performance over randomly initialized 
weights. 

Training results: 



 

 

Testing results: 



 

2.3 No validation 
The final step is to train with the entire dataset. Training with the entire dataset improves 
performance. 

Testing data: 



 

2.4 Misclassified samples 
For both random weight initialization and pretrained weights, the misclassified samples 
skew towards higher number of annotators, with 7/7 images being the most misclassified 
class. Adding class balancing and data augmentation helps reduce this skew and changes 
the distribution to look more Gaussian, centered at 3/7 and 4/7. 



2.4.1 Random weight initialization 

 

 



 

 



2.4.2 Pretrained weights 

 

 



 

 



3 ViT-Base Patch 16/224 
I took the best training hyperparameters from my ResNet-18 experiments: 

1. Pretrained weights; update all layers 
2. Remove 3/7 and 4/7 annotator images from training set 
3. Random oversampling 
4. Image augmentation on all samples 

And then I tried tuning effective batch size, learning rate, dropout, and weight decay. 

3.1 Effective batch size 
Since this vision transformer requires more memory than ResNet, I reduced the batch size 
from 32 to 8 and monitored my GPU memory usage: 

1. ResNet-18 with batch size 32: 2.3GB / 6.0GB 
2. ViT-Base Patch 16/224 with batch size 8: 3.7GB / 6.0GB 

I added gradient accumulation so I could try different effective batch sizes (effective batch 
size = batch size * number of batches to accumulate per update). I found that effective 
batch size didn’t make much of a difference in either training convergence or validation F1 
score, so I used an effective batch size of 8 for all further experiments. 

Training results: 



 



 

3.2 Learning rate 
Using the same learning rate and scheduler as ResNet-18 caused training loss to blow up, 
so as a guess, I reduced the initial learning rate from 1e-3 to 1e-5, and training converged. I 
experimented with a few static learning rates but didn’t see any obvious improvements to 
make. For all further experiments, I used an initial learning rate of 1e-5, decaying at a rate of 
0.91/epoch. 

A static rate of 1e-5 gives the best validation F1 score, but since this occurs during non-
convergent training behavior, I don’t trust this result. 

Training results: 



 



 

 



3.3 Dropout 
I tried a few different dropout configurations, starting from the final layer and then starting 
from the first layer.  

Adding dropout to the first layer adds significant bias to the model without improving 
generalization. Starting from the final layer and moving back gradually adds bias. 
Generalization improves a little, but as I added more layers, bias became too high.  

Adding dropout rate of 0.5 to only the last layer gave the best validation F1 score. 

Training results: 

 



 



 

3.4 Weight decay 
For these experiments, I switched to the AdamW optimizer since it’s supposed to give more 
stable results with weight decay. 

As a sanity-check, I trained with the AdamW optimizer without weight decay to compare 
against the Adam optimizer. The results don’t match, but I didn’t have time to investigate. 

However, the results do match for small weight decays, and higher weight decay does 
seem to improve validation F1 score. It looks like learning rate needs to be adjusted for a 
weight decay of 10. I didn’t have time to try combinations of dropout and weight decay, so I 
went with dropout only. 

Training results: 



 

 



 



 

3.5 ResNet-18 vs. ViT-Base Patch 16/224 
For a single training/testing run, the best performance for ResNet and ViT are comparable. 

Testing results: 



 

4 Ensembling 
Ensembling the best ResNet and ViT models results in worse performance than either of 
them, but I didn’t have time to investigate.  

Testing results: 



 

5 FCNN 
For the FCNN, I used the same hyperparameters as the best ResNet-18 configuration. The 
only difference is that I used mean and standard deviation of 0.5 for normalizing the pixel 
values to [-1, 1] in preprocessing. I only ran one experiment, removing the LR scheduler. 

Training results: 



 



 



 

Testing results: 



 



6 Appendix 

6.1 Torchmetrics AUROC problem 

 

6.2 Gradient accumulation with ResNet 
With grad_accum=4 (accumulate 4 batches of size 32 per update), testing performance 
doesn’t change, but training converges much more quickly. 

Training data: 



 

Testing data: 
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